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ABSTRACT
As the number of security suites available on the market 
increases, so does the need for accurate tests to assess their 
detection capabilities and footprint, but accuracy and appropriate 
test methodology becomes more diffi cult to achieve. Good tests 
help consumers to make better-informed choices and help 
vendors to improve their software. But who really benefi ts when 
vendors tune products to look good in tests instead of 
maximizing their effi ciency on the desktop?

Conducting detection testing may seem as simple as grabbing a 
set of (presumed) malware and scanning it. But simplicity isn’t 
always easy. Aspirant detection testers typically have limited 
testing experience, technical skills and resources. Constantly 
recurring errors and mistaken assumptions weaken the validity of 
test results – especially when inappropriate conclusions are drawn, 
as when likely error margins in the order of whole per cents are 
ignored, causing exaggerated or even reversed ranking.

We examine (in much more detail than previous analyses) typical 
problems like inadequate, unrepresentative sizing of sample sets, 
limited diversity of samples and the inclusion of garbage and 
non-malicious fi les (false positives), set into the context of 
2010’s malware scene.

Performance and resource consumption metrics (e.g. memory 
usage, CPU overhead) can also be dramatically skewed by 
incorrect methodology such as separating kernel and user data, 
and poor choice of ‘common’ fi le access.

We show how numerous methodological errors and inaccuracies 
can be amplifi ed by misinterpretation of the results. We analyse 
historical data from different testing sources to determine their 
statistical relevance and signifi cance, and demonstrate how easily 
results can drastically favour one tested product over the others.

INTRODUCTION
This paper aims to answer the basic question: does AV testing 
provide an incentive for security vendors to improve their 
products, thus enhancing computer security globally? Or is it 
more likely to be the exact opposite – spending too much time 
focused on achieving good performance in tests, responding to 
the expectations of users and marketing departments (who, over 
time, have become accustomed to these testing nuances and 
themselves prefer clearly differentiated rankings expressed by 
percentages and charts), rather than introducing meaningful 
improvements to the product for actual use in the battlefi eld? 

We’ll fi rst focus on the most common area of problems in testing 
– the tests of detection of malicious software – and see how 

useful these results are (or are not). We describe a general 
approach which can be used for evaluating detection and which 
we would expect to provide more useful results than the ones 
generally employed by current tests. Afterwards, we dive into the 
area of statistics and see what can be said about the collections 
used in current tests. The second section looks at certain 
procedural issues related to new methods employed by anti-virus 
products, and the effect they have on the results. Following that, 
we move on from detection testing to look at the other 
commonly tested factors – performance and resource usage.

DETECTION TESTING – THE THEORY
There is little doubt that the detection of malicious programs is 
the most important property of software describing itself as 
anti-virus or anti-malware. It is therefore one of the most 
commonly tested and mis-tested features of such software – 
especially since it seems to many that such testing is very easy, 
even trivial, to conduct. After all, what can be diffi cult about:

• Collecting a large group of (presumed) malicious fi les

• Running the tested product(s) against those samples and 
seeing how many of them they detect 

• Putting the results into a nice spreadsheet?

Even a properly trained monkey could do that... or could it? Let’s 
take a deeper look at how messy things can get.

COLLECTING A LARGE SET OF MALICIOUS 
FILES
How large should the sample set be? These days, we’re seeing 
tens of millions of unique malicious fi les each year. Intuitively, 
in order to achieve good coverage of the ‘real’ world, the 
number of tested samples should not be signifi cantly lower (as 
in, three orders of magnitude or more). Of course, there are 
specialized types of tests in which the nature of the test implies 
that the size of the collection has to be considerably smaller – 
like the one for obtaining a VB100 award – but those tests 
concentrate on a different type of problem, where the total 
population is much smaller than the totality of malicious objects 
in the whole world.

Most of the time, it’s very easy to collect quite a few malicious 
fi les, simply by visiting known malicious websites and allowing 
the computer to get infected; or by plugging it into the Internet 
without applying the patches that a cautious user applies in order 
to counter known security vulnerabilities. Respectable anti-virus 
testing organizations also usually get actual samples from 
mainstream AV companies as part of the sample-sharing 
initiatives that enable the industry to offer its customers better 
protection. Yet, from time to time, some ‘creative’ testers decide 
that fi les provided by a tested vendor could be engineered to bias 
the results in favour of that particular product. Those who do not 
learn from the mistakes of others are bound to repeat them – 
either by reinventing something along the lines of the infamous 
Rosenthal virus simulator, or even by producing their own 
malicious programs. The latter has always been a matter of 
heated debate [1], while the former is just an outright 
demonstration of not understanding how anti-virus products 
actually work these days – it was an attempt to simulate known 
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viruses by abstracting a ‘signature’ on the absurd assumption 
that every anti-virus package uses the same signature.

Collecting a set of malicious fi les always generates a question as 
to how to winnow the chaff from the grain. Most sources of 
‘malicious’ fi les are not pure – there is always some proportion 
of fi les which are corrupted, non-functional (non-viable), belong 
to the grey zone between malicious and clean, or are completely 
benign (innocent) fi les. In an ideal world, such fi les would be 
identifi ed by the tester at the beginning of the process, before 
executing even one of the anti-virus products in the test 
environment. Unfortunately, that would require the tester to be 
more skilled in determining what is or isn’t malicious than all 
the tested products – in which case the tester might be better 
employed producing a better security product in his own right.

Thus, the usual, rational mode of operation is reversed – fi rst, 
the set of fi les is collected, including such a proportion of 
inappropriate samples. These fi les are run past the tested 
products and the burden of removing the chaff is transferred to 
the anti-virus vendors who are forced to ‘defend’ themselves by 
pointing out which fi les they don’t detect should not have been a 
part of the test set in the fi rst place. In other words, it’s a model 
based on presumption of guilt – unless you can prove you really 
should not be detecting the fi les, you’re guilty of not detecting 
them.

Is that a good approach? Well, it certainly is very convenient 
from the tester’s point of view. It is also very effi cient in 
hampering the anti-virus vendors’ real work – especially since 
the percentage of unsuitable fi les is generally quite high – often 
reaching percentages in double fi gures. No, that doesn’t mean 
that the rest of the samples are grain (i.e. valid) – only that they 
haven’t been proven to be invalid. The number of man-hours 
vendors have to spend on this is getting higher and higher, and 
the law of diminishing returns is very applicable in this case. A 
proportion of the problematic fi les are usually very easy to 
identify. Others are more diffi cult to identify, but still 
manageable by the use of advanced technology. Yet other fi les 
might really require the intervention of an experienced human 
malware analyst to determine whether they actually are 
malicious or not – after all, if the problematic fi les were that 
easy to identify, they would have been detected in the fi rst place.

Having the proper collection of infected fi les is, of course, only 
a part of the test. Unless one also takes into account the number 
of false alarms produced by the product when run against a 
collection of clean fi les, the test will essentially be useless, 
regardless of the quality and size of the malicious collection. 
After all, even a simplifi ed version of the Perfect Antivirus by 
Dr. Solomon (Echo %1 is infected by a virus!!!) would win such 
a test, regardless of its contents. An anti-virus which declares 
everything to be malicious is going to get full marks in a test 
that doesn’t care about false positives.

The issues we’re discussing can be characteristic of experienced 
and renowned testers – so this is more of an example of how 
good things can be, than how bad. In general, the more tests are 
there, the more they look like a denial-of-service attack on the 
anti-virus vendors.

For now, though, let’s assume that the tester was able to collect 
a set of malware samples which is reasonably free of 

inappropriate or innocent fi les and that he has unleashed the 
anti-virus products under test on that collection.

WHAT DO THE TEST RESULTS REALLY SAY?

The obvious answer is – the test results tell us how many fi les 
from the collection a particular product detected under the 
conditions of that particular test. Everything else is a matter of 
extrapolation and interpretation. If one doesn’t look at the 
complete picture (which means having access to all the 
malicious fi les that existed at the time of the test), any 
interpretation of the results along the lines of ‘This product 
detects X per cent of all the malicious programs that existed’ is 
going to have a smaller or larger error margin, and ascertaining 
that error margin is largely guesswork. Predicting the future 
success rate of a product is even less of an exact science.

Igor Muttik wrote about this problem almost nine years ago [2], 
yet the results still seem to be largely unconsidered or 
misunderstood by quite a few testers. We’ll look at this problem 
through 2010 eyes. 

In most cases, the fi nal test results are presented in a form which 
is easy to comprehend for a layman – the detection rates of 
products are written as percentages and put into a spreadsheet 
next to the names of tested products. Then, one click of the 
‘Sort’ button reveals who gets the fi rst prize. This is sometimes 
followed by further ‘simplifi cation’ of the results – for example, 
by removing the actual detection rates and retaining only the 
fi nal order of the products.

Obviously, the less information the result sheet provides, the 
more opportunity there is for the reader or publisher to 
(mis-)interpret the conclusions. In general, it seems that the less 
information is given, the more room for doubt there is about the 
tester’s qualifi cations – and a report stating that ‘Vendor X is the 
best’ without any supporting evidence is more likely to indicate 
an incompetent tester than a detailed report describing the 
methodology, source of information and detailed results. 
AMTSO (the Anti-Malware Testing Standards Organization) 
has published several documents on these issues [3, 4], ranging 
from best practices and guidelines for various types of testing to 
discussion of some of the ethical questions related to such tests. 
We won’t be going deeper into the problem of presentation of 
the results here, but rather concentrate on the most important 
question: what is the best way to measure detection rates?

WHAT IS THE BEST WAY TO MEASURE 
DETECTION RATES?

The basic question we need to ask is: what do we actually mean 
by ‘detection rate’? The answer is more complicated than it 
might seem at the fi rst glance. The usual mechanism of testing 
detection by taking a ‘snapshot’ of product detection by 
scanning a static collection of fi les was applicable enough in 
earlier times, when the state of the threat landscape changed 
very slowly compared to today’s threatscape. It has been 
suggested that one necessary ingredient is the temporal 
information [5] (how results change over time), especially when 
we consider the rapid updates provided by cloud-based 
technologies (but more on that later). Another important aspect 
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concerns the users (or rather their computers) – some might be 
more prone to certain types of attacks than others. For example, 
servers are less likely to be compromised via browser 
vulnerabilities, while computers running Mac OS are 
themselves immune from purely Win32-based viruses (unless, 
of course, they also host some form of Windows emulation, and 
ignoring [for our present purposes] the issue of heterogeneous 
malware transmission). 

In order to avoid ambiguity, we’ll present the proposed method 
in mathematical notation. This is a synthesis of commonly used 
approaches that already exist and, within appropriate limits, 
these approaches can be represented simply in this mathematical 
form. It is, however, capable of demonstrating a wider range of 
scenarios.

We’ll be considering three (non-empty) sets – a set, U, of users 
for whom this particular test should be relevant, a set of tested 
products, P, and a set of malicious attacks, A. For our purposes, 
the attack is an attempt to subvert a user’s computer in an 
undesirable way (for example, stealing his information, 
performing denial of service, or one of many other possibilities). 
We only consider attacks which would succeed if the user didn’t 
use any product from the set P – thus, visiting a website 
exploiting a vulnerability specifi c to Internet Explorer is not 
considered here as an attack when the visitor is using a 
text-based browser like Lynx. Also, protecting the computer from 
threats that have no relevance is not something that should be 
rewarded – it’s more important to protect from real dangers. Of 
course, it’s justifi able to declare the attack to be successful if the 
malicious program would have ‘visited’ the computer – thereby 
reducing the concept of ‘attack’ to the more common description.

There will always be one-to-one correspondence between 
attacks and the fi les (or samples) which caused them: if the 
scenario consists of a chain of events caused by different fi les, 
they will be considered separate attacks, as each can (and most 
likely should) be detected and prevented. For example, visiting 
a website where an injected IFRAME is followed by access to 
JavaScript, which in turn loads a malicious SWF fi le will be 
considered as three separate attacks. This is because at each 
stage, one component could be replaced by another, undetected 
by the current version of a product under test.

Finally, without loss of generality, we’ll treat the time t as 
discrete and every event as happening inside the time-span of 
length T.

Defi nition: Indicator function Incident(u, a, t) is equal to 1 if 
user u was subject to attack a at time t, and zero otherwise. 
Indicator function Detect(p, a, t) is equal to 1 if product p 
would detect attack a at time t.

The fi rst function captures the notion of ‘when was who 
attacked by what’. We’ll assume that each user was attacked at 
least once. We’re also assuming that the products work 
consistently with respect to the users – if the attack is detected 
by the product for one user at some point in time, it will also be 
detected for other users at the same time. Note that we’re not 
implying consistency over time – a product might stop detecting 
some type of attack or detect it only ‘by chance’ every now and 
then [6]. Having established these two concepts, we’re ready to 
defi ne the functions we’re interested in:

Defi nition:

Prevalence tells us how large a proportion of users was 
affected by a particular attack at some point in time – the 
higher the proportion, the more often the attack occurred. 
Naturally, prevalence of a particular attack varies with time, in 
most cases starting with quick acceleration followed by slower 
decline and a long tail descending to a level almost 
indistinguishable from zero. 

Defi nition:

The fi rst function describes the success rate of product p when 
stopping attacks for user u. The second function represents the 
average success rate among all users – that is, the expected 
value of the answer to the question ‘How successful has product 
p been for user u’ when choosing user u randomly. Note that 
this approach treats all users equally – if one user gets attacked 
eight times and the product stops six of the attacks (success rate 
75%) and the other is attacked just twice, but the product fails to 
stop either of the attacks (success rate 0%), the average success 
rate is 37.5% rather than the alternative ‘stopped six attacks out 
of 10’ = 60% score. The reasoning behind our choice is that it’s 
the user who is interested in the results of tests – so it’s better to 
assume a uniform choice of user, rather than a uniform choice 
of attack. As a bonus, if the attacks actually are distributed 
uniformly, our value AvgSuccess will accord with the other 
approach.

In simple terms, the value of AvgSuccess(p) estimates how well 
product p would help Joe User avoid becoming a victim of a 
successful attack, and thus might be more useful for him than 
the raw detection count. There is one important disadvantage, 
though – it’s almost a Catch-22 situation when obtaining the 
values of the Incident function. In order to know that there was 
an attack, there has to be some means of detecting the attack. 
But if one of the products to be tested is used to fi nd out 
whether there really was an attack in the fi rst place, it will score 
a guaranteed point in the fi nal conclusions for its Detect 
function too – resulting in a 100% detection score for this 
product in the end, while ignoring the possibility that it has 
generated false positives [7]! For now, we’ll postpone this 
discussion until the next section, where we deal with the 
practical hurdles.

It is usual to perform various simplifi cations in order to reduce 
the amount of data that needs to be collected or processed. First, 
there is the approach which assumed uniform distribution of the 
attacks among the users. This is equivalent to assuming that 
there is just one user who gets hit all the time. Since there might 
have been multiple users being subjected to the same attack at 
the same time in the original scenario, a common trick is to 
incorporate Incident(u, a, t) by Prevalence(a, t) into the Success 
formula (AvgSuccess coincides with Success in this case, as 
there is only one user):
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Still, the values of Prevalence are hard to come by: almost as 
hard as was the case with the Incident function. Thus, in many 
tests, this value is assumed to be equal to 1 – if the fi le appeared 
at least once, it becomes part of the test set. The problem with 
this approach becomes apparent immediately – one simply 
needs to look a few years back into the past, when worms like 
Sasser were rampaging through the Internet. If a particular 
instance of Sasser was just one out of 10,000 fi les, not detecting 
it would amount to a negligible loss of 0.01% in the overall 
detection score. Yet, most people would be likely to consider a 
product that missed such a threat as undesirable. In other words, 
the prevalence information is unequivocally important for 
producing useful results, if not critically necessary.

Even if we overlook the lack of prevalence data in most tests, 
the problem outlined in [2] remains – using just a smaller subset 
of all the malicious fi les for the purpose of the test produces an 
error margin which might be too large for the test results to bear 
any actual meaning. Let’s look at this in more detail.

Assume that there are N fi les in total in the test set (in the 
terminology introduced above, |A|=N), there is only one user 
and the prevalence of all fi les is equal to 1. In other words, 
we’re looking at the simplest possible case – just the count of 
detected fi les divided by the total number of fi les. Now, take a 
product which detects D per cent of the fi les and run it against a 
collection consisting of M randomly chosen fi les from this 
collection. What can we expect to fi nd?

Table 1 summarizes the results of a simple simulation for 
various selections of the parameters, showing the average 
number of detected fi les, minimum and maximum detections 
encountered during the simulations, and the standard deviation 
of the results.

Instead of using a simulation, it is also possible to calculate the 
values explicitly – although letting someone see the random 
number generator produce the results is often more convincing 
than requiring them to process the calculations. Since there are 
D.N fi les which are detected by that particular product and 
(1-D).N of them which are missed, the probability of the 

product detecting exactly K fi les from the subset of size M is 
equal to:

It’s not very surprising that the expected value (‘average’) of 
this distribution is equal to (M.D), as can be obtained by proper 
manipulation of the calculation:

In a similar fashion, we can calculate the standard deviation:

From statistics we know that the interval of two statistical 
deviations from the average to both sides covers about 95% of 
the cases, assuming that the distribution isn’t too irregular 
(which in this case it isn’t). In other words, if we have one 
million fi les and test an anti-virus product which detects 97% of 
them, but we restrict our attention to a randomly chosen 
100,000 of them, the result is quite likely to fall into the interval 
[96.9, 97.1], but it’s surely not bound to be equal to exactly 
97%. It’s also noteworthy that, technically, we could have ended 
up with a detection rate as low as 70%, if we were unlucky 
enough to choose all 30,000 of the fi les this product does not 
detect. Fortunately, the probability of such a choice is 
astronomically small if the fi les are chosen randomly. Deliberate 
selection of the ‘bad’ choices is another issue.

The approximation of standard deviation can be used to estimate 
the required size of the test set. If E denotes the standard 
deviation we’d like attain, the resulting formula is:

For example, if the detection rates are specifi ed as percentages 
with two decimal places, we can set E=0.0001 divided by 2, so 
that the ‘two standard deviations’ rule allows us to rest happy, 
with 95% confi dence that the result will differ from the actual 

value only to the fi rst non-signifi cant place. A few 
examples are shown in Table 2.

Interestingly, the value of M that is necessary to 
achieve an accuracy of one decimal place converges 
quite quickly. This is related to the fact that for a very 
large value of N, the denominator in the formula 
above becomes dominated by its fi rst term, rather 
than the second one, as was the case for smaller N. 
Thus, the limiting size of the useful test set can be 
expressed as

Using a number of fi les above this limit is not very 
likely to improve the accuracy of the result for a 
particular tested product. Naturally, this assumes that 
the fi les were chosen from the entire set of N fi les 

N D M Average Minimum Maximum Std. dev

1 million 80.00% 1,000 80.03% 75.70% 83.70% 1.25%
1 million 80.00% 10,000 79.97% 78.81% 81.24% 0.39%
1 million 80.00% 100,000 80.00% 79.65% 80.37% 0.12%
1 million 80.00% 500,000 80.00% 79.88% 80.14% 0.04%
1 million 97.00% 1,000 97.00% 95.30% 98.60% 0.54%
1 million 97.00% 10,000 97.00% 96.39% 97.47% 0.16%
1 million 97.00% 100,000 97.00% 96.83% 97.16% 0.05%
1 million 97.00% 500,000 97.00% 96.94% 97.06% 0.02%
10 million 97.00% 10,000 97.01% 96.47% 97.52% 0.17%
10 million 97.00% 100,000 97.00% 96.85% 97.20% 0.05%
10 million 97.00% 1,000,000 97.00% 96.94% 97.06% 0.02%
10 million 97.00% 5,000,000 97.00% 96.98% 97.02% 0.01%

Table 1: Results of a simple simulation.



AV TESTING EXPOSED  KOŠINÁR ET AL.

5VIRUS BULLETIN CONFERENCE SEPTEMBER 2010

without the introduction of any statistical bias; otherwise the 
results might be skewed in either direction.

So far, we’ve been looking at one anti-virus. However, if there is 
more than one being tested, the problems can reappear, even 
with test sets of such a size as described above. Using the same 
simulation as before, let’s see what happens if two competitive 
products of nearly equal detection rate are tested on the same 
subset. The set will consist of one million fi les and we’ll choose 
a random subset of a particular size, and test both products on 
this subset. If the results of this test do not agree with the ‘true’ 
detection rates (the ones corresponding to the whole set of fi les), 
we’ll count this as an inverse case. Results of this simulation are 
summarized in Table 3 (each row representing an average of 
1,000 simulations):

Detection rate 1 Detection rate 2 Subset size Inverse cases
97.00% 96.90% 1,000 44.90%
97.00% 96.90% 10,000 36.30%
97.00% 96.90% 100,000 8.20%
97.00% 96.90% 500,000 0.00%
97.00% 96.80% 1,000 40.70%
97.00% 96.80% 10,000 22.90%
97.00% 96.80% 100,000 0.60%
97.00% 96.80% 500,000 0.00%

Table 3: Results of the simulation.

As we can see, even with 1/10 of the whole set, the results can 
quite often be reversed – possibly too often for the test to be 
meaningful. Unfortunately, the number of inverse cases depends 
on the difference between the actual detection rates of the 
products – so if they’re very close to each other, it will require a 
very large test set to tell them apart and put in correct order of 
ranking. In particular, we might want to fi t four standard 
deviations in between them, in order to prevent the intervals 
from overlapping (up to the 95% confi dence of ‘two standard 
deviations’, as usual). For example, an estimated 330,000 fi les or 
so is necessary to tell the 97% and 96.9% detections apart, while 
approximately 120,000 should suffi ce for 97% and 96.8%.

Last, but surely not least, there is the question of content in the 
set that is not actually malicious. The calculations described 
above were based on the assumption that the fi les in the set are 
appropriate for true positive detection. In most cases, this is not 
really the case – the proportion of non-functional, clean or 

damaged fi les in the set varies quite a lot between various types 
of tests, ranging from single fi gure percentages to tens of 
per cents. Some products tend to play it safe here, working with 
a ‘presumption of innocence’ and not detecting fi les that are not 
unequivocally malicious, whereas others prefer the ‘guilty 
unless proven innocent’ approach and declare them malicious.

Naturally, this can pose a problem if such products compete 
with each other, since this results in a test of design philosophy 
rather than accurate detection. In order to model this and see 
how it affects the results, each product will be assigned a real 
number J(p) between 0 and 1 (inclusive), describing the 
percentage of the ‘junk’ fi les product p detects. In our 
experience, this seems to be pretty much constant for each 
product and independent of the actual test set. In this scenario, 
the original detection rate R(p) will need to be adjusted to 

R′(p) = R(p).(1 – B) + J(p).B

Here, B denotes the percentage of the ballast fi les in the 
particular test.

As an example, we can look at what happens if two products with 
actual detection rates of 99% and 95% and J(p) equal to 0.1 and 
0.8 respectively compete in a test whose B is as little as 8%. The 
adjusted detection rate of the fi rst product will be 91.88% and for 
the second it’ll be 93.80%. Yes, the difference is astounding – not 
only has the second product surpassed the fi rst, it has done so by 
quite a large margin. Even to break even (pun not intended), the 
ballast ratio would have to be lower – about 6% at most, as can 
be calculated from the following general formula:

We can also look at the problem from the other side. Imagine 
that a test includes three products – X, Y and Z. Their results 
from the test are summarized in Table 4, along with their junk-
detection ratios (vendor X is from the ‘innocent unless proven 
guilty’ camp, vendor Z from the other one; Y stands somewhere 
in between). What are the true results if we know that the test 
set was of somewhat lower quality, consisting of 20% chaff and 
80% grain? A simple formula gives us the answer:

Vendor Test result Junk detection True detection

X 77% 5% 95.00%

Y 81% 40% 91.25%

Z 70% 75% 68.75%

Table 4: Results for products X, Y and Z.

Now it should be obvious that the large fraction of ballast helps 
those who don’t care about detecting junk or who actively seek 
it out (sometimes at the expense of actual malware). As a little 
bonus, product Y managed to detect more malicious fi les than 
were present in the test!

All in all, detection of junk fi les can be used to alter the 
detection rate rather easily, unless the tester is extremely careful 
about excluding such fi les from the test set. 

N D E Calculated M
1 million 80% 0.001/2 ~450 thousands
10 million 80% 0.001/2 ~750 thousands
100 million 80% 0.001/2 ~800 thousands
1 million 95% 0.001/2 ~160 thousands
10 million 95% 0.001/2 ~200 thousands
100 million 95% 0.001/2 ~200 thousands
1 million 97% 0.001/2 ~100 thousands
10 million 97% 0.001/2 ~120 thousands
100 million 97% 0.001/2 ~120 thousands
10 million 97% 0.0001/2 ~5.4 millions

Table 2: The approximation of standard deviation can be used 
to estimate the required size of the test set.
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DETECTION TESTING – PRACTICE
In the previous section, we saw why and how the size of the test 
set affects the results. Unfortunately, even if the test set is well 
selected, validated and of appropriate size, the outcome might 
not be correct due to an incorrect methodological approach 
being taken during the test. New technologies have constantly 
appeared in the area of virus detection and some of them are 
quite incompatible with previous testing methodologies.

The fi rst of such technologies that we’ll consider is cloud-based 
detection of fi les. First of all, due to the nature of the cloud, the 
answer given at one time might not be the same as the answer 
given at another time – thus, the results are no longer repeatable 
[6, 8] (which is against the basic principles of the scientifi c 
method). Naturally, this can happen with regular (non-cloudy) 
products as well, although non-deterministic behaviour is 
usually considered a bug in such case, rather than being inherent 
to the method itself.

The standard method of testing a product by setting it loose on a 
large collection of fi les can also be problematic. In most cases, 
the strength of the cloud lies in its ability to shorten the response 
time when new, as of then undetected, threats appear. Querying 
the cloud about lots of old, already known samples does not 
exercise this important feature at all – it just asks for a static, 
one-time ‘dump’ of the information a long time after its ‘best 
before’ date.

Another popular phrase is ‘behavioural detection’. Quite often, 
this approach is presented as a method of catching possibly 
harmful actions performed by a program on execution, even if 
the program itself wasn’t declared malicious by the scanning 
engine. Since very many malicious programs are already 
detected by other methods before they get to execute, testing the 
quality of behavioural detection itself can be diffi cult. Thus, one 
of the more common approaches used by the testers is to disable 
(or try to disable) these other methods and see whether the 
attacks would still be blocked by some form of dynamic 
analysis and detection. This has very little to do with real-world 
use of the products – after all, the very idea of multiple levels of 
defence is to have different layers co-exist in synergy. In itself, 
testing each layer separately is not a bad idea, but without 
knowing and considering the correlation between the results 
attributable to various layers, there is not much that can be said 
about their interrelation and integration.

For example, if a product detects 95% of malicious programs 
using ‘standard’ detection (thus missing 5% of them) and 80% 
via behaviour-based blocking (20% of misses), one cannot 
conclude that, together, these two methods miss just 20% of 5% 
= 1% of all the threats, resulting in 99% detection rate. It could 
well be the case that those 80% of behavioural detections are 
fully covered by the 95% of standard ‘static’ detections. 
Naturally, the same reasoning applies to any number of 
protective layers, not just two of them – without knowing the 
correlations between their detection rates, one cannot conclude 
anything about their fi nal, real-world effectiveness.

This can be seen when testing Internet content blacklisting 
methods. Blocking URLs or IP addresses known to be hosting 
malicious content has proven to be very effi cient in certain 
cases. Since one website can be hosting various pieces of 

malicious code which are frequently updated, blocking the 
whole website can solve several problems at once. There are 
even publicly available sources (for example, Google’s Safe 
Browsing [9]) which allow anyone to place queries about 
potentially unsafe links. On the other hand, blocking a particular 
piece of malware blocks it regardless of its origin – be it a single 
site or a whole lot of them. Thus, it is highly likely that there is 
a signifi cant overlap between these approaches and, just as in 
the example above, attempts to test them independently of each 
other prevent anyone from drawing valid conclusions about 
their real-life success rate using a combination of features.

As with the cloud-based detections, this approach brought new 
problems for testing. Unlike a static collection of malicious 
fi les, which do not change by themselves, the content of 
malicious websites varies over time, so they need to be tested 
repeatedly – but without being noticed. Otherwise, the website 
might stop serving the malicious content completely or even 
replace it with something benign in order to fool over-curious 
analysts (and testers).

PERFORMANCE TESTING
While the detection rate of a product is important, it will not be 
very useful in terms of protecting its users if it takes too much 
time to identify a program as clean or malicious, or if it slows 
the system down to the speed of a snail, since it will most likely 
either be disabled or completely removed from their machines. 
Thus, testing the performance and resource usage is an 
important component of any comprehensive ‘full product’ test.

One very common approach is to test the slowdown introduced 
by the product’s resident protection when it monitors activities 
in the system and tries to warn the user when something 
malicious is trying to enter the computer (as when copied from 
another system or downloaded from the Internet, for example). 
Since testing should be done in automated fashion, this 
particular aspect is usually tested by simulating certain activities 
which are likely to be intercepted by the anti-virus – usually by 
copying and/or creating a large number of fi les and measuring 
the overhead introduced by the measured product.

While there is nothing wrong with measuring this type of 
overhead, the basic question is usually left unanswered – how 
closely does this scenario simulate what a real user is going to 
experience? Do users really copy large numbers of fi les here 
and there [10]? If so, what kind of fi les are they? Such questions 
need to be answered before one can determine how relevant the 
results of such test really are.

It is usually expected that executables (and perhaps archives) 
introduce the largest overhead – fi rst because they’re most often 
holders of malicious code and thus need to be analysed very 
thoroughly, and second because they tend to be very large. But 
how often do these fi les get moved around the disk? Perhaps 
during the installation of a new application or an update of an 
existing application (unless the user is a developer who 
compiles new applications more often than Joe User, but even 
then the new executables are probably not generated that often). 
Isn’t it more likely that photos are downloaded from digital 
cameras, or songs downloaded from the Internet, and that these 
are the objects that users tend to copy the most? However, these 
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tend to introduce very little extra delay – simply because they’re 
only rarely usable for nefarious purposes, and searching for the 
few potential dangers that could be hiding in them can be done 
very quickly.

Thus, this kind of testing presents an awkward dilemma – either 
test something that is easily measurable, but happens only 
rarely, or look at something insignifi cant which happens often. 
Unfortunately, it seems that the fi rst choice tends to be the one 
found more often in existing tests, because consumers have got 
used to the fact that it’s easy to demonstrate huge and 
measurable differences among various AV products, even though 
those differences have little or no signifi cance in real-life 
scenarios.

Clearly, the best approach to this type of measurement is to start 
by building profi les of typical users (or even better, classes of 
users – since programmers tend to behave differently from 
gamers, who aren’t very much like offi ce workers, etc.) [11]. 
This approach allows the same type of activity to be either 
replayed or simulated repeatedly so that the relevant 
measurements can be performed. Otherwise, the results will say 
very little about the real world.

CONCLUSION
We’ve presented a few examples of how easy it is to test an 
anti-virus product and produce results which mean nothing at 
all. The list is not comprehensive by any means – but the 
problems presented are the ones we tend to encounter most 
often. Some of the methods can be corrected by taking the 
advice described here, but some of them might need to be 
abandoned and replaced by a completely different approach. 
Time is a precious resource and poor tests waste too much of it 
for vendors, who could have used it for real improvement of 
their products, fi ne-tuning for protection in the real world rather 
than for optimized performance on the testers’ workbench. After 
all, good real-world testing helps both the consumers/users and 
the producers/vendors – so the sooner the fl agrant fl aws are 
corrected, the better. 
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