
A DOSE BY ANY OTHER NAME BUREAU, HARLEY

224 VIRUS BULLETIN CONFERENCE OCTOBER 2008

A DOSE BY ANY OTHER NAME
Pierre-Marc Bureau, David Harley

ESET Research, 610 West Ash Street, Suite 1900,
San Diego, CA 92101, USA

Tel +1 619 876 5458, +1 619 876 5467
Email {pbureau, dharley}@eset.com

ABSTRACT
Years ago, when alt.comp.virus was still useful, ‘Name that
virus’ was a popular virtual party game, and virus names were, if
not standardized, at least easy to cross-reference with tools like
VGrep [1]. In 2008, the numbers have escalated exponentially,
analysis and detection have become increasingly generic, and
naming, even for some WildList malware, has become nearly
useless because of the diffi culty of mapping samples to names.
The CME (Common Malware Enumeration) initiative [2], while
attempting to achieve something many people wanted, seems to
have foundered on the rocks of the reality. Yet we continue to
provide ‘top ten’ threat lists that have virtually no commonality
or consistency across different vendors and sites, so that our
customers continue to ask whether we detect the media virus du
jour, and the slashdotty community point to us and giggle at our
incompetence in failing to provide information about what we
detect. Are all our solutions going generic? Are there ways to
resolve this issue so that our customers can understand what’s
happening and regain some faith in the industry without being
hung up on the question ‘Do you detect virus X?’ We think so,
and will discuss some possible approaches in this paper.

INTRODUCTION
‘What’s in a name? That which we call a rose
By any other name would smell as sweet.’ [3]

For some years in the 1990s, the newsgroup alt.comp.virus
provided a (moderately useful but totally unmoderated) meeting
ground between the anti-virus community (in a broad sense), the
VX (Virus eXchange) crowd of virus writers and wannabes, and
people looking for information about viruses or AV products.
Before the signal-to-noise ratio there got so bad that most
researchers gave up on the group, it was not uncommon for
someone to initiate a game of ‘Name that Virus’ where one or
more characteristics of a specifi c virus were described, and
others would attempt to identify it from the description. At the
time, while inconsistencies in virus naming between products
were already a source of some potential confusion, a naming
convention did already exist following a 1991 meeting by
CARO members [4]. However, the ‘naming standard…[was]
mostly to do with what you cannot use as a name’ [5]. As
Joe Wells subsequently pointed out [6], because there is no
CARO reference collection, CARO naming is not sample based
and constitutes a guideline on format rather than a catalogue of
specifi c sample/identifi er matches. The WildList, on the other
hand, is very much sample based, being tasked primarily to
‘report exactly which viruses are spreading in the wild, to
collect samples of those viruses, and to provide the viruses to

bona fi de antivirus researchers…’ In consequence, its approach
to naming is pragmatic, and does not claim to name viruses
‘correctly’ or ‘authoritatively’. At the moment, however,
WildCore remains at least nominally bound to replicative
malware rather than the wider range of non-viral malware that
tends to dominate today’s threatscape. CARO and its members
remain important players in defi ning naming standards [4] and
have extended the scope of the scheme far beyond replicative
malware, but acknowledge that no product is fully compliant
with it.

CME was intentionally ‘divorced’ from the detail of single
specifi c samples, representing each malware threat by ‘a
collection of one or more “samples” … [which] will likely
contain multiple fi les (i.e. not consist of a single executable
binary fi le)... so that someone with their own threat sample will
be able to fi nd the correct CME identifi er associated with the
sample [7].’ However, it seems to have lost all impetus.
Furthermore, that intention to relate to threat samples is
compromised by the rapidity with which many malware families
release new variants and/or use new packer variants, changing
many characteristics on a (more than) daily basis.

BOTS ON THE LANDSCAPE
The attempts of ‘notoriety-hungry nerds of yesteryear’ [8] to
produce sophisticated Proof of Concept (PoC) viruses have given
way to profi t-oriented initiatives directed by ‘anonymous career
criminals’. Self-replicating malware that spreads far and fast has
decreased dramatically in market share compared to (for
instance) shortish spam runs pointing to URLs poisoned with
trojans. These threats are reinforced with server-side
polymorphism, repeated packing and obfuscation, recompilation,
self-updating and so on, designed to increase their resistance to
signature-focused detection. The sophisticated (but, arguably,
more easily detected in the long term) polymorphic viruses that
characterized the early 1990s have become of largely historic
interest. And naming has become increasingly divorced from
sample identifi cation.

The WildList Organization is in the process of working on its
limitations, which are well known: the WildList is based on a
well-validated but small and purely viral sample set which is
perpetually behind the curve in terms of threat currency. Even
under those circumstances, differences in naming conventions
and continuous malware modifi cations that may not qualify as
new variants with individual names mean that specifi c instances
of malware cannot be identifi ed by name only: effectively, the
usefulness of the WildList is largely restricted to the physical
sample set, as distributed to trusted individuals. To the individual
without such access, names like W32/Agent!ITW#33 or
W32/Autorun!ITW#174 mean very little. This is in stark contrast
to the previous decade, where most of the people likely to read
the WildList at all had an idea of what Stoned.Michelangelo.A
was, and could be reasonably confi dent that it mapped to a
verifi able infection and detection.

Some mailing lists exchange information about suspected new
threats or threat variants including such details as:

• Message subjects (for email-borne malicious links or code)

• Malicious links

A DOSE BY ANY OTHER NAME BUREAU, HARLEY

225VIRUS BULLETIN CONFERENCE OCTOBER 2008

• Filenames

• MD5 and/or SHA1 signatures of suspicious fi les

• Summary of detections reported when the actual sample
was submitted to VirusTotal (or a similar resource).

Useful though such information can be (such reports are
considered a considerable asset by many members of AVIEN
[9], where advisories on this model have been in use for many
years), it also offers a signifi cant demonstration of the naming
problem. An informal survey of generic and/or heuristic
detections reported in this way illustrates how diffi cult it is to
identify the exact nature of a specifi c threat for anyone who
doesn't have:

• An actual sample to check against an MD5 (for instance).

• Knowledge of the naming conventions used by individual
vendors for heuristic, generic, and malware-specifi c
detections.

• Knowledge of what the terms heuristic, generic and
malware-specifi c actually imply – see glossary for a
simplistic set of defi nitions.

These requirements actually imply technical knowledge and
access to resources not commonly found beyond the borders of
specialist communities (and presuppose that the risk of additional
problems – hash collisions, for example – is fairly small).

Heuristic and/or generic detections reported by multiple
scanners against distinct individual samples give some idea of
the diffi culties of establishing useful identifi cation of an
infection purely on the basis of a name supplied by a scanner.
The following examples are taken from reports of newly
emergent (presumed) malware reported at a stage in their life
cycle that for most or all scanners predates sample analysis and,
therefore, (near-)exact identifi cation.

Sample 1
• TR/Crypt.XPACK.Gen

• Trojan.Crypt.AP

• (Suspicious) - DNAScan

• Trojan.Crypted-16

• Suspicious File

• VirTool.Win32.LDE

• A variant of Win32/Nuwar.CG

• Troj/Dorf-BA

• Trojan.Peacomm

• Trojan.Crypt.XPACK.Gen

Sample 2
• TR/Crypt.XPACK.Gen

• Win32:Zlob-BVC

• (Suspicious) - DNAScan

• Trojan-Downloader.Win32.Exchanger.f

• Trojan.Crypt.XPACK

• Trojan-Downloader.Win32.Exchanger.f

• Trojan:Win32/Tibs.gen!G

• Probably a variant of Win32/Statik

• Troj/Agent-GVE

• Suspected of Downloader.Zlob.8

Sample 3
• Win-Trojan/Downloader.62976.M

• TR/Crypt.XPACK.Gen

• W32/Downldr2.BLMC

• Downloader.Agent.AETI

• Trojan.Downloader.Exchanger.D

• (Suspicious) - DNAScan

• Trojan.DownLoader.50204

• Suspicious File

• Win32/Collet.AA

• Trojan-Downloader.Win32.Agent.mik

• Win32.SuspectCrc

• Trojan:Win32/Tibs.gen!G

• Win32/Agent.ETH

• Trj/Downloader.SZE

• Troj/Exchan-C

• Downloader

• Trojan.Crypt.XPACK.Gen

Clearly, these are snapshots of identifi cations made early in the
detection process: any of these names may have changed
dramatically once the samples were analysed within the relevant
virus laboratories, allowing more precise identifi cation and
assignment to an appropriate malware family. What constitutes
‘appropriate’ assignment, however, can vary widely from one
laboratory to another.

Similarly the ‘latest’ CME entry on the website at time of
writing seems to be CME-711 [2], a collection of samples
generally associated with the Storm botnet:

• Win32.Small.dam

• W32/Downloader.AYDY

• TR/Dldr.Small.DBX

• Win32/Pecoan

• Trojan.Downloader-647

• Win32/Fuclip.A

• W32/Small.DAM!tr

• Small.DAM

• Downloader.Tibs

• Trojan-Downloader.Win32.Small.dam

• Downloader-BAI!M711

• Win32/Nuwar.N@MM!CME-711

• W32/Tibs.gen12

• Trj/Alanchum.NX!CME-711

• Troj/DwnLdr-FYD

• Trojan.Peacomm

• TROJ_SMALL.EDW

The CME initiative might still have some use within the original
framework of objectives as a means of describing classes of
malware and cross-referencing more-or-less generic names, but

A DOSE BY ANY OTHER NAME BUREAU, HARLEY

226 VIRUS BULLETIN CONFERENCE OCTOBER 2008

that use would be compromised in many respects by the
inability to access and cross-refer to individual samples in a
reference collection. For the everyday user, a CME identifi er,
like one of those strings of VirusTotal detections, simply refers
them back to an aggregation of names without a reference
sample. (Leaving aside the question of what an everyday user
could usefully do with a reference sample!) When identifi ers are
included that could be applied equally appropriately to malware
from a completely unrelated malware family, what has Joe
Average really learned from the identifi cation?

These examples suggest some interesting aspects of present
common practice in heuristic and generic identifi cation:

• The presence of certain packing and obfuscation tools as a
major heuristic results in the use of a single identifi er
across a wide range of individual samples.

• Some identical, highly generic identifi ers are used in every
case by some vendors, whereas other identifi ers suggest
three different malware families.

• An entire range of heuristic techniques may be masked by
a single ‘suspicious’ or ‘probable’ identifi er.

• Use of the name of a generic class of malware as an
identifi er.

These are entirely legitimate practices, but they don’t actually
give the scanner user any help in identifying exactly what has
been found on (and possibly infected) their system. Even if it
were possible to give such help on a newly discovered sample,
how useful would it be to the user? Is it any more reasonable to
expect precise identifi cation of a malicious program from a
heuristic detection than it is to expect such information from an
email fi lter that blocks all .EXEs? We believe not, with one
major reservation.

All the above detections were harvested in laboratory or
pseudo-laboratory situations: that is, the samples were examined
in the cybernetic equivalent of a Petri dish. They were not
allowed to execute except within the constraints of a virtual
environment, and even then, only where the scanner used some
variation on dynamic analysis to examine the suspicious object.
In a ‘live’ environment where the suspicious object may have
already had the opportunity to infect a system, the question
arises as to whether the scanner is capable of effective
disinfection on the basis of a generic or heuristic detection.
Where a detection label is obviously generic, the end-user may
be able to evaluate the likelihood of an effective disinfection,
but a highly generic identifi er can be mistaken for a near-exact
or exact identifi cation because it can’t be distinguished from a
label format used for more-or-less exact identifi cation based on
a complete analysis. Thus, it may be incorrectly assumed that
effective post-infective removal is a given. In real life, a generic
detection cannot always guarantee a safe generic disinfection.

TESTING DIFFICULTIES
These diffi culties in mapping identifi er to sample have very
serious implications for detection testing, among other issues.
Poor scanner detection testing is often based on so-called
‘validation’ of samples by using a ‘favoured’ scanner to identify
each sample. Of course, there are many reasons why this

approach is methodologically invalid (scanner bias, inability to
distinguish false positives, and so on). In addition, though,
where the tester fails to recognize a generic or heuristic
detection as such, the likelihood increases dramatically that a
sample giving rise to a possible false positive by that product
will be included incorrectly in the test.

In a not-unrelated issue, researchers have often expressed
concern [10] that heuristic detections may cascade
inappropriately throughout the industry as signature detections,
because some vendors have failed to check that the program is
actually malicious (or potentially unwanted, or whatever) let
alone whether the detection is heuristic. As Bustamente [11]
points out, it’s not intrinsically incorrect to fl ag a program
heuristically as ‘suspicious’ that shares signifi cant
characteristics with known types of malicious software, but
serious problems arise when false detections are disseminated
throughout the anti-malware (and anti-malware testing)
industries. We would also contend that when a heuristic
detection identifi er is cascaded as a specifi c (signature)
identifi er, its value as an identifi er is to some extent
compromised, not only for the user and for a vendor using it as
signature detection, but for the originating lab. At best, it
increases the likelihood of confusion among end-users.

RECEIVED WISDOM
While the terms ‘exact identifi cation’ and ‘near-exact
identifi cation’ aren’t commonly used outside the industry, there
is an implicit assumption in common usage that signature
detection, if we must use that phrase, is somehow equivalent
to identifying the presence of malicious code with some
precision. However, modern anti-malware is usually capable
of detecting a wide range of unknown malware or variants
using a wide range of analytical tools variously described as
heuristics, behaviour analysis and so on. The popular insistence
that precision in naming a malicious program is a primary
measurement of how effectively a scanner detects and
processes a malicious object is mistaken. In fact, it’s not really
compatible with the way in which modern scanners work.
We’ll address the <irony>minor</irony> question of how we
change this perception in due course. But for now, we’ll move
on to a simple and obvious proposition. All anti-virus scanners
are heuristic.

Some, of course, use more complex heuristic analyses than
others. But no reputable commercial scanner trudges wearily
through a database of signatures, string by string, for each and
every object it scans. (Near-)exact identifi cation is
resource-intensive, even where it’s appropriate to the threat
type, and is impractical as the main scanning tool in today’s
climate of malware glut, where no vendor has timely access to
or time to process every malicious variant in existence. But even
scanners that don’t utilize particularly advanced heuristics don’t,
for instance, usually look for macro viruses in the MBR, or for
static strings in impossible locations.

LOCATION, LOCATION, LOCATION [12]
A scanner might look for a signature of some sort in a place
where it might be found in an unviable but infected executable,

A DOSE BY ANY OTHER NAME BUREAU, HARLEY

227VIRUS BULLETIN CONFERENCE OCTOBER 2008

for instance, but that falls into the question of what a scanner
might detect apart from infected, viral or otherwise malicious
objects – garbage fi les, harmless test fi les, corruptions,
intendeds, and so on. That does have a bearing on our discussion,
because it introduces a particular naming complication. ‘Does
your product protect me from W32.FailedTrojan.DAM or
PEVirus.NotAVirus?’ (Suggested answer: ‘No, because even if
we knew what Company X meant by that name, the identifi er
suggests that it isn’t damaging and protection isn’t needed.’)
However, it’s not our main concern.

Essentially, the amount of processing time a scanner expends on
identifying and removing a likely or proven threat is regulated
by the context in which it scans: to take a simplistic example, a
gateway scanner doesn’t have to waste time on disinfection if it
can simply block. A product designed to run on platforms with
limited exposure and functionality is unlikely to scan
(malware-specifi cally, generically, or heuristically) for malware
that isn’t normally effective on that platform. (Mixed
environments where use is made of multiple desktop platforms
are a different issue, and we won’t discuss them here.)

DO YOU DETECT VIRUS X?
We are often asked whether our scanner detects such-and-such a
virus, and under what name. Sometimes we can be exact
(especially with older viruses, but it’s rare to be asked about
obsolete malware). Often, ‘such-and-such a virus’ is actually a
generic detection, and that poses problems of expectation
management, because customers continue to believe that exact
identifi cation is a necessary demonstration of effectiveness at
resolving a malware problem. Although, like most vendors, we
respond to and therefore, arguably, perpetuate such assumptions
by publishing ‘top ten’ information, we have gone to some
trouble to encourage differentiation between malware-specifi c
and generic detections, focusing on useful trend information
rather than raw statistics.

Sometimes we can quote a somewhat equivalent detection:
for example, many vendors have generic signatures for
Storm-related malware under different names (Zhelatin, Nuwar,
Peacomm etc. [2]). However, the correlation may be illusory:
it’s often unrealistic to compare generic detections because they
catch whole families of known malware (and sometimes
unknown family members), and each vendor uses slightly
different (sometimes very different) criteria to defi ne and
identify a family, let alone individual family members and
variants. Under these circumstances it’s not at all easy:

• to compare detection rates of specifi c family members, let
alone variants and sub-variants

• to establish whether a (presumed specifi c) malicious
program is detected by a generic driver or heuristic without
reference to a specifi c sample.

Looking back over our own product’s detections over a period
of over a year, we fi nd that 50% or more of our ‘top ten’
detections are, characteristically, generic and/or heuristic, and
that in some areas (email-borne replicative malware, for
example) generic and heuristic detections far exceed
malware-specifi c detections [13]. Of course, this kind of statistic
will vary widely across products, not only according to the

extent to which individual vendors make use of generic
technologies, but also according to the effectiveness of those
technologies against the current totality of active threats. This
effectiveness may vary dramatically over lengthy periods. As
has been pointed out many times, nearly all detection is, to
some extent, heuristic, so percentages like this are, to some
extent, ‘magic numbers’.

An informal survey of the ‘top ten’ detections by several of the
‘big names’ in anti-virus demonstrates that a very high proportion
(in some cases all) top ten entries are, nowadays, generic. Even
if such detections were not characterized by the .gen suffi x which
is conventionally used to denote generic signatures, fi gures
characteristically given on vendor websites are aggregated under
a generic identifi er: for example, W32/Mytob rather than a
specifi c Mytob variant identifi ed by a suffi x consisting of a string
such as .A, .FG, or .CAC. Even where a highly specifi c variant
is included in a list, this will generally not take into account such
variations as packed/repacked malware, where compression and
obfuscation are used to increase resistance to detection by
near-exact identifi cation and generic signature. To take a
vendor-neutral example, in the Virus Bulletin Prevalence Table
for March 2008 [14], the top ten detections consisted entirely of
generic detection names such as Pushdo, Netsky, OnlineGames
and Agent.

At ESET, we currently see consistently high scores from a
heuristic applied to a very wide range of malware with the
shared characteristic of using autorun.inf for malicious
purposes. (This facility allows a program on removable media to
run more-or-less automatically when mounted: this is
convenient for legitimate installation programs, for instance, but
has obvious advantages for malcode.) When a program displays
characteristics that suggest malicious intent and uses the
Autorun facility, it is likely to be fl agged by the INF/Autorun
identifi er.

However, a specifi c instance of malcode may be detected with a
completely different heuristic rule and therefore another
identifi er, depending on other characteristics, on where it is in
its life cycle, and on infection vector. Some samples are
identifi ed generically as a bot or agent: for example, programs
using packing and obfuscation techniques characteristic of a
class of malware.

Figure 1 shows the number of detection strings generated when
scanning a set of samples detected as ‘Autorun’ by ESET
Antivirus. ESET Antivirus has 296 different strings that include
the substring ‘Autorun’. Running a number of scanners against
the same sample set, we get different names for the samples, as
we’d expect, but also a huge diversity in the number of labels
used by each vendor: in one case, 675 different labels, and in
another, less than 100. (These data do not represent any kind of
measurement of effectiveness: they simply represent the extent
to which identifi cation processes vary between labs.)

NAMING VERSUS IDENTIFICATION
If your product of choice detects malware, does it matter what
identifi er it uses? The sheer volume of malware variants
nowadays means that it’s more effi cient to use more generic
detection techniques such as static and dynamic analysis and

A DOSE BY ANY OTHER NAME BUREAU, HARLEY

228 VIRUS BULLETIN CONFERENCE OCTOBER 2008

Figure 1: Data extracted from the very comprehensive xref collection released by AV-Test [15] in April 2008. Vendor names are
replaced by numeric identifi ers to avoid inappropriate interpretations.

generic signatures wherever possible. This has been
represented as a detection failure [16], but it’s unlikely that
botnets and other threats would have a signifi cantly smaller
impact if all companies used the same identifi er. It could be
seen (and no doubt is) as an illustration of the problem this
industry has with naming. The time and resources needed to
cross-match all the samples seen, so that each vendor can use
the same name for each variant or sub-variant, is simply not
available in a time of glut, when it’s sometimes estimated that
the number of new samples for analysis runs into several
thousand per hour [16]. In real life, the actual name used by
any product might vary widely according to which variant it
might have picked up, not to mention when and where the
detection was triggered.

Generic signatures offer a considerable advantage by
identifying, for instance, software that appears to attempt to
exploit a software vulnerability such as the CVE-2007-0038
animated cursor issue [17], lessening the need for further
analysis. On the other hand, if detection names are disseminated
across other databases (including those of other vendors)
without a clear understanding of what characteristics are fl agged
using that name, confusion ensues. This is especially so where
the classifi cation is so broad, that it is only possible to map
name to sample using a proprietary classifi cation scheme that
isn’t exported with the name. But anti-malware companies
continue to pretend that generic or heuristic detections refer to a
single specifi c malicious program, when it’s exactly that
proactive detection that keeps the anti-malware industry from
wasting resources on unnecessarily exact identifi cation.

It doesn’t matter how exact a detection is, unless it generates
problems like a false positive, or a disinfection more damaging
than the malware itself. (Unfortunately, malware-specifi c

detection is often far easier than generic disinfection, especially
for non-viral malware. Thus it is particularly important that
malicious programs are detected as early as possible in their
evolution, ideally [but not always feasibly] as soon as they hit a
proactive scanner’s radar.)

The user community’s ambivalence around the issues of
near-exact identifi cation versus generic detection derives from
the blind belief that exact ID should somehow deliver the
proactive benefi ts of generic detection without its uncertainties
and risks of false positives. This in turn derives from the belief
that security software should offer the 100% security that will
absolve the customer from the need to take any responsibility for
their own safety [18]. As long as anti-malware marketeers remain
reluctant to get away from the TOAST (see glossary) mentality
and pander to the perceived ‘need’ for spurious and unprovable
statistics, end-users will continue to expect 100% detection
irrespective of their own actions and fume when they don’t get it.

The answer is, yet again, education and expectation
management: not in terms of turning the entire population into
malware experts (we are not that naïve…) but in terms of
persuading them to adjust their expectations. In the fi rst
instance, we can do this by overhauling our naming and
marketing practices. In particular, by making clearer distinctions
between generic/heuristic identifi ers and more-or-less specifi c
identifi ers, and by providing better information on how scanning
technologies actually work – not by revealing protected trade
secrets, but with clear and easily accessible information on
naming practice. Also, by making it clear that:

• There are no 100% solutions.

• They cannot rely on automated detection to free them from
the need to implement sound, across-the-board security
practice.

A DOSE BY ANY OTHER NAME BUREAU, HARLEY

229VIRUS BULLETIN CONFERENCE OCTOBER 2008

• More generic approaches improve detection rather than
hamper it.

• The website-hosted malware descriptions our customers
fl ock to are a limited approximation to reality, not precise,
authoritative identifi cations of every known malicious
program and, in the absence of a huge real-time reference
collection, they cannot be. How and even whether such a
collection can ever be realistically maintained is not an
issue we can address here.

Conveying these messages to customers, the media, and even
the broader security community is no easy task, and there’s no
guarantee that customers won’t reach the conclusion that
‘malware detection is broken, but (insert your own panacea du
jour here) will give us 100% protection.’ However, if we don’t
acknowledge these diffi culties and capitalize on our real
strengths, the industry will contract dramatically, and our
customers will have as much to lose as we do.

Here’s a quotation from science fi ction/fantasy that curiously
echoes the popular overestimation of the value of standard
identifi ers, based on the assumption that they always refl ect a
high degree of precision: ‘… the name is the thing…and the
truename [sic] is the true thing. To speak the name is to control
the thing’ [19]. In real life, malware naming is closer to a very
different conceptualization, also from (an earlier era of) science
fi ction.

‘When a man shows another man a particular part…and he
can’t recall the proper label for that part…He calls it a doodad
or a hingey or a whatchamacallit….A doohingey can be the
name of a scrub mop or a toupee. It’s a term used freely by
everybody in a certain culture. A doohingey isn’t just one
thing. It’s a thousand things.’ [20]

However, in the context of malware nomenclature, the driver is
not a failure of memory, but a failure of prescience. The industry
is surprisingly successful at partially overcoming sample glut
using various (and overlapping) forms of proactive detection
based on automated analysis of characteristics and behaviour
(passive and active heuristics, emulation and so on). But it
cannot always ascribe meaningful and precise classifi cation to
malicious objects purely on the basis of automated analysis.

To return to Juliet’s question [3], a name is an abstraction we
use to describe an object, especially its characteristics and its
history (what it was before, and so on).

In the malware context, it is possible for two malicious
programs to have the exact same (defi ning) characteristics at
one point in time but they might still be named differently
because they have completely different histories and might
change in opposite directions with time.

Are there alternatives to malware naming that might give more
information to users and administrators, while steering them
away from inappropriate assumptions? To help users to
understand the threats that may be detected on their system,
security solutions can provide information detailing the reasons
that make an object suspicious. For example, a report might
allude to the changes to the system that were attempted by a
program, or the infection vector used to install a potentially
malicious fi le on the system. It is possible to have such

information in a form that is generic enough not to explain to
the bad guys how to bypass the product, but specifi c enough to
inform the user. In fact, this is already happening to an extent
(as with our INF/AUTORUN example), but is only useful where
the user is in a position to understand what a heuristic or generic
identifi er really denotes.

In the same vein, the ever-popular ‘top ten’ reports might be
replaced or augmented with reports on the underlying trends in
malware. Users might learn more from a report telling them that
online game password stealers are on the rise than from a report
that a specifi c family (let alone variant) was responsible for 5% of
total detections over a period. Unfortunately, this doesn’t answer
the question ‘Am I protected from…’ where often the only
accurate answer is ‘We can’t say for sure without reference to a
specifi c (set of) sample(s).’ Translating that into a form of words
which is both accurate and acceptable to marketing departments
is left as an exercise for the reader. But the user community would
benefi t from the realization that it’s the wrong question to ask.

So what is the ‘right’ question? That depends on context, but
might include all sorts of issues around performance testing and
product evaluation that we need not cover again here. In terms
of specifi c threats, though, information useful to a reasonably
informed individual might include:

1) What is it? What are its characteristics and how has it
evolved? (Clearly, that’s a best case scenario: there will
be many instances where we don’t have the luxury of that
precision.)

2) Why is it malicious? In case of generic detection, what
makes it potentially harmful?

3) Why was it fl agged as (potentially or actually) harmful?
What else do I need to know about its effects? Where can
I learn more?

4) What is, realistically, the likelihood that my systems will
be exposed to it?

5) Is there action I can or should take apart from keeping my
anti-virus product updated?

6) Can I expect complete disinfection from the scanner, or
will it involve some manual disinfection? If so, how do I
do it, and why can’t the product do it automatically?

7) What should I tell my users/customers?

8) What alternative performance metrics are available to me?

9) Last but not least, how specifi c is the information
available to me? Am I looking at a broad class of
malware, a specifi c family, or a specifi c variant?

CONCLUSION
It is important to try to keep customer expectations realistic.
The glut problem can’t be fi xed by throwing more and more
resources at analysis throughput focused on near-exact
identifi cation. Proactive detection (behaviour analysis) is a Good
Thing (though not the 100% solution), not a shortcut for lazy
programmers, and we need to get this message over to people
who are hung up on the idea of 100% detection, perfect signature
detection and infallible heuristics, and give precise information
about how much detail is available about a given threat.

A DOSE BY ANY OTHER NAME BUREAU, HARLEY

230 VIRUS BULLETIN CONFERENCE OCTOBER 2008

Modern malware is not always susceptible to automated
removal: some families are notorious for digging themselves
into a system without any regard for the effect of a botched
removal. Precise information about a short-lived variant is a
lower priority than detection and blocking of malware families,
and precise identifi cation is a poor performance metric without
a fi rm correlation between names and samples [21].

ACKNOWLEDGEMENTS
We don’t have space to thank everyone who contributed directly
or indirectly to our research, but wish to acknowledge the
following people in particular, for their willingness to discuss
and share information pertinent to this paper: members of
AVIEN, including Conny Jäverdal and Mark Ackermans; Julio
Canto of Hispasec; Andreas Marx and his colleagues at AV-Test;
our colleagues at ESET LLC, especially Andrew Lee.

REFERENCES
[1] http:// http://www.virusbtn.com/resources/vgrep/;

http://vgrep.viruspool.net/.

[2] http://cme.mitre.org/.
[3] Shakespeare, W. Romeo and Juliet: Act II Scene ii.

[4] Bontchev, V. Current status of the CARO malware
naming scheme. http://www.people.frisk-software.
com/~bontchev/papers/naming.html.

[5] Solomon, A.; Gryaznov, D.O. Dr. Solomon’s Virus
Encyclopaedia (2nd edition). Dr Solomon’s, 1995.

[6] Wells, J. How scientifi c naming works.
http://www.wildlist.org/naming.htm.

[7] Beck, D. The CME process: scope, identifi ers, and
guidelines for deconfl iction. http://cme.mitre.org/cme/
process.html.

[8] Harley, D. Macs and Malware. Computer Weekly (in
press).

[9] http://www.avien.net/.

[10] Lee, A. Personal communication.

[11] Bustamente, P. Fenomen(al) false positives.
http://research.pandasecurity.com/archive/Fenomen_
2800_al_2900_-False-Positives.aspx. 2008.

[12] http://www.channel4.com/4homes/ontv/location/
index.html.

[13] Global Threat Report 2007, ESET Research team.
http://www.eset.com/threat-center/case_study/GlobalT
hreatReport(Jan2008).pdf.

[14] http://www.virusbtn.com/resources/malwareDirectory/
prevalence/index.xml?200803.

[15] http://www.av-test.org/.
[16] Krebs, B. Anti-virus fi rms scrambling to keep up.

http://www.washingtonpost.com/wp-dyn/content/
article/2008/03/19/AR2008031901439.html?hpid
=sec-tech.

[17] http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2007-0038.

[18] Harley, D. I’m OK, you’re not OK. Virus Bulletin.
November 2006. http://www.virusbtn.com/
virusbulletin/archive/2006/11/vb200611.

[19] Le Guin, U. K. The rule of names. Ziff-Davis 1964.

[20] ‘Doodad’, Ray Bradbury, in ‘Astounding’, Abner Stein
Ltd. 1943.

[21] Harley, D.; Lee, A. Who will test the testers?
Proceedings of the 18th Virus Bulletin International
Conference 2008.

GLOSSARY

Active heuristic Analysis of the code present in an object by
executing it in some form of virtual
environment (roughly equivalent to the
forensic term ‘dynamic analysis’: this is more
time-consuming than passive analysis, but can
offer more and better information in some
circumstances).

Almost exact
identifi cation

Recognition of a virus where the identifi cation
is only good enough to ensure an attempt to
remove the virus will not result in damage to
the host by using an inappropriate disinfection
method. Not every section of the
non-modifi able parts of the virus body is
uniquely identifi ed.

Exact
identifi cation

Recognition of a virus when every section of
the non-modifi able parts of the virus body is
uniquely identifi ed.

False positive Describes the scenario where an anti-malware
scanner incorrectly detects malware where
there is none. Antonymous to ‘false negative’
where a scanner fails to detect malware.

Generic Describes security programs that don’t
recognize specifi c threats, but defend using a
method that blocks a whole class (or classes)
of threats.

A generic signature is a special case of this; a
whole set of known and sometimes unknown
variants are detected and processed by a
single signature rather than by individual
signatures for each variant.

Antonym of ‘malware-specifi c.’

Heuristic
detection/
scanning

Recognition of an object that has enough viral
or malicious characteristics to suggest that it
is probably a virus or other malware.
Normally assigns a score to each
characteristic: a score above a pre-defi ned
threshold triggers a detection identifi er.

Known virus
scanning,
virus-specifi c
scanning

Scanning for known viruses resulting in the
identifi cation by name of a virus found in the
scanned environment. Malware-specifi c
scanning (known malware scanning) extends
the concept to non-replicative malware as well
as viruses, worms and so on.

A DOSE BY ANY OTHER NAME BUREAU, HARLEY

231VIRUS BULLETIN CONFERENCE OCTOBER 2008

Location,
Location,
Location

UK property-search television programme:
see [12].

Negative heuristic A rule or criterion, which, if met, lessens the
likelihood that the object being analysed is not
viral or malicious.

Passive heuristic Analysis of the code present in an object by
passive scanning: the code is examined, but
not executed in some form of virtual
environment.

Positive heuristic A rule or criterion, which, if met, increases
the likelihood that the program being analysed
is viral or malicious.

Scan string,
search string

A sequence of bytes found in a known virus
that shouldn’t be found in a legitimate
program. The term is not restricted to static
search strings, and may include wildcards and
regular expressions, or the use of another
virus-specifi c detection algorithm.

Also sometimes known as ‘scan signature’ or
just ‘signature’.

Signature Synonym for ‘scan string’. May accurately be
applied to a static search string, but often
misleads people into thinking there is a single
byte sequence used by all virus scanners to
recognize each virus or variant.

Sub-variant A loose descriptor for a variation on a known
and defi ned variant where one detection
addresses, or tries to address, a wide range of
discrete sample types.

TOAST ‘The Only Anti-virus Software That…’ (tip of
the hat to Padgett Peterson): used here as
shorthand for the marketing approach ‘Trust
us and install our software and we will protect
you from everything…’

Variant Member of a malware family that has its own
individual identifi er. However, there is little
standardization of practice in defi ning and
distinguishing variants across vendor
boundaries. Furthermore, the use of
obfuscators, runtime packers and so on to hide
a known variant from signature scanning is
not usually considered to result in a new
variant, so a single variant detection may
actually address a broad range of individual
samples, not all of which may be detected at
any one time.

Virus-specifi c
detection

Detection of known viruses using search
strings specifi c to those viruses or variants.

VX Acronym probably coined by Sarah Gordon
for ‘Virus eXchange’: i.e. relating to authors,
distributors and collectors of viruses: the
antonym of AV (Anti-Virus). Capitalization is
optional and sometimes contentious.

WildCore Sample collection compiled and maintained
by the WildList Organization International,
and widely used as a validated test set for
In-the-Wild (ItW) testing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

